Combined LEP Higgs Searches

Tom Junk
Carleton University
Ottawa, Canada

LEP Fest, 10 October 2000

Preliminary update of the LEP Higgs Working group, with many thanks to the ALEPH, DELPHI, L3 and OPAL Collaborations, and the Accelerator divisions at CERN.
Data Sets

\[\int Ldt \quad [\text{pb}^{-1}] \]

<table>
<thead>
<tr>
<th>Experim.</th>
<th>Sept 5</th>
<th>Oct 10</th>
<th>New Lumi</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALEPH</td>
<td>149</td>
<td>178</td>
<td>29</td>
</tr>
<tr>
<td>DELPHI</td>
<td>160</td>
<td>160</td>
<td>**</td>
</tr>
<tr>
<td>L3</td>
<td>145</td>
<td>170</td>
<td>25</td>
</tr>
<tr>
<td>OPAL</td>
<td>140</td>
<td>165</td>
<td>25</td>
</tr>
<tr>
<td>Total</td>
<td>594</td>
<td>673</td>
<td>79</td>
</tr>
</tbody>
</table>

DELPHI suffered from a TPC short. Current data still being calibrated/analyzed.

Average \(E_{\text{CM}} \) for the year: 206.0 GeV

New data: mostly 206.6 GeV (a little at 208.x.)

\(E_{\text{CM}} \) very important to extend sensitivity

Goal from Sep. LEPC: double the lumi >206 GeV
What’s also New: Analysis and Reprocessing

Many detailed checks have been carried out since the September 5 LEPC. Some problems found and fixed:

ALEPH: Improved background estimation in the four-jet channel
DELPHI: Improved signal and background estimations in the four-jet channel
L3: Reprocessing of data for TEC
 Change to Neutrino channel analysis
OPAL: Reprocessing for better Silicon hit association

Three sets of results to watch:

“NEW” All data up to October 10 LEPC
“REFERENCE” Data used for September 5 LEPC but with new analysis
“OLD” Results for September 5 LEPC
Reconstructed m_H of selected candidates

Have to cut somewhere. For illustration only.
Cut on mass independent variables (like b-tags) so that
\[
\frac{s_{\text{expected}}}{b_{\text{expected}}} \approx 0.3 \quad \text{For } m_{\text{rec}} > 109 \text{ GeV}
\]
for a 114 GeV Higgs

<table>
<thead>
<tr>
<th></th>
<th>Data</th>
<th>Backg</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>All m_{rec}</td>
<td>354</td>
<td>328</td>
<td>20.2</td>
</tr>
<tr>
<td>$m_{\text{rec}} > 109$ GeV</td>
<td>39</td>
<td>37.1</td>
<td>12.0</td>
</tr>
</tbody>
</table>
Cutting a Little Harder

This time, adjust cuts so that

\[
\frac{s_{\text{expected}}}{b_{\text{expected}}} \approx 1.0
\]

For \(m_{\text{rec}} > 109 \text{ GeV} \)

for a 114 GeV Higgs

<table>
<thead>
<tr>
<th>Events / 3 GeV/c²</th>
<th>(\sqrt{s} = 200-210 \text{ GeV})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LEP S/B=1.0</td>
</tr>
<tr>
<td>background</td>
<td></td>
</tr>
<tr>
<td>hZ Signal</td>
<td></td>
</tr>
<tr>
<td>((m_h = 114 \text{ GeV}))</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>All (m_{\text{rec}})</th>
<th>103</th>
<th>92.5</th>
<th>11.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m_{\text{rec}} > 109 \text{ GeV})</td>
<td>7</td>
<td>7.5</td>
<td>7.2</td>
</tr>
</tbody>
</table>
Very Hard Cuts

\[\frac{s_{\text{expected}}}{b_{\text{expected}}} \approx 2.0 \]

For \(m_{\text{rec}} > 109 \) GeV

for a 114 GeV Higgs

\[\sqrt{s} = 200-210 \text{ GeV} \]

LEP S/B=2.0

Data

\[\text{Events / 3 GeV/c}^2 \]

<table>
<thead>
<tr>
<th></th>
<th>Data</th>
<th>Backg</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>All (m_{\text{rec}})</td>
<td>42</td>
<td>34.0</td>
<td>5.6</td>
</tr>
<tr>
<td>(m_{\text{rec}} > 109) GeV</td>
<td>5</td>
<td>2.3</td>
<td>3.9</td>
</tr>
</tbody>
</table>

Losing Efficiency -- but “really good” events kept
Why Cut at All?

- Need to separate the expected signal from the expected background

- **Pick good variables to optimize separation**
 - reconstructed m_H
 - b-tags
 - kinematic variables

- **Express in bins**
 - Experimental Data
 - Monte Carlo Signal Expectation
 - Monte Carlo Background Expectation

- **Systematic Uncertainties**
 - By search channel, on signal and background
 - Signed errors, labeled by source name
 - Correlated errors properly treated

Need a language: classical confidence levels
All LEP Data in bins of Expected Signal/Background

Important Candidates stand out

And the integral -- the optimal answer to the questions:

“How many did you see? How many did you expect? Where did you cut?”
Comparing Signal and Background Hypotheses

• Construct a parameter that orders outcomes as more signal-like, or less signal-like

\[Q = \frac{P_{\text{poiss}}(\text{data} \mid \text{signal + background})}{P_{\text{poiss}}(\text{data} \mid \text{background})} \]

\[\log Q = -s_{\text{tot}} + \sum_{\text{bins}} n_{i}^{\text{data}} \log \left(1 + \frac{s_{i}}{b_{i}} \right) \]

Sep 5 LEPC: “Old”
Updated Analysis 1: ALEPH

Four-Jet Channels:
Improved background modeling.
Some candidates become less significant

“Old” --- Sept. 5 Results

“Reference” --- Sept. 5 Data with New Analysis
Updated Analysis 2: DELPHI

More Monte Carlo -- Better modeling of signal and background.
Increased Sensitivity. Some candidates become more significant.

“Old”

“Reference”
Just the New Data

Hard cuts, only the best candidates shown.

\[\sqrt{s} = 200-210, \text{ after Sept.5 GeV} \]

- LEP S/B=2.0
- **background**
- **hZ Signal**

\[(m_h=114 \text{ GeV})\]

<table>
<thead>
<tr>
<th>all</th>
<th>> 109 GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>cnd</td>
<td>12</td>
</tr>
<tr>
<td>bgd</td>
<td>9.71</td>
</tr>
<tr>
<td>sgl</td>
<td>1.13</td>
</tr>
</tbody>
</table>

Reconstructed Mass \(m_H \) [GeV/c^2]
The Effect of New Data

“Reference” Set

New data for October 10. Same procedures as reference set:
How Significant is it?

→ Confidence Levels

• CL_s -- compatibility with signal hyp.
 CL_s < 0.05: Signal hypothesis ruled out at the 95% CL.

• CL_b -- compatibility with background hyp.
 1-CL_b < 5.7×10^{-7} is a 5σ discovery

CL calculations cross-checked by several people:
 • MC ensemble
 • Folding of probabilities
 • FFT
 • Different test-statistics (LR or others)

Systematic errors can be treated in more than one way.

Spread in CL significances: ±0.2σ

Preliminary!
Lower Limit on m_H in Combination

Observed limit: $m_H > 113.2$ GeV @95% CL
Median Expected: 115.0 GeV,

in many experiments with only background present

Reference set: new analyses, data for Sep. 5:
observed limit: $m_H > 113.2$ GeV, expected 114.8 GeV
Observations by Channel

Lepton, Neutrino, Tau

Combined they are as sensitive as the four-jet channels

LEP $\sqrt{s} \leq 210$ GeV

-2 \ln(Q)

Observed

Expected background

Expected signal
SM Higgs Limit Summary

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Observed</th>
<th>Expected</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALEPH</td>
<td>110.2</td>
<td>113.0</td>
</tr>
<tr>
<td>DELPHI</td>
<td>111.2</td>
<td>112.3</td>
</tr>
<tr>
<td>L3</td>
<td>113.0</td>
<td>110.9</td>
</tr>
<tr>
<td>OPAL</td>
<td>109.3</td>
<td>112.2</td>
</tr>
<tr>
<td>LEP 4J</td>
<td>111.8</td>
<td>114.1</td>
</tr>
<tr>
<td>LEP Neutrinos</td>
<td>110.9</td>
<td>112.1</td>
</tr>
<tr>
<td>LEP Tau</td>
<td>103.7</td>
<td>105.7</td>
</tr>
<tr>
<td>LEP Lepton</td>
<td>110.6</td>
<td>110.0</td>
</tr>
<tr>
<td>LEP</td>
<td>113.2</td>
<td>115.0</td>
</tr>
</tbody>
</table>

- All limits are preliminary
- Limits are quoted at 95% CL
- All computed consistently with the same test-statistic, error handling, etc. and may differ from the experiments’ limits esp. when CL curves are near the 5% edge.
Background Confidence Level

Evolution: Reanalysis and New Data

Situation

<table>
<thead>
<tr>
<th>Situation</th>
<th>Significance of 1-CL$_b$ Minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sept. LEPC</td>
<td>2.6σ</td>
</tr>
<tr>
<td>“Reference”</td>
<td>2.2σ</td>
</tr>
<tr>
<td>October 10:</td>
<td>2.5σ</td>
</tr>
</tbody>
</table>
Current Status of $1-{\text{CL}}_b$ on the Roadmap

- **Background-Only Hypothesis**
 - $m_H = 115$ GeV
 - We are here

- **Signal+Background Hypothesis**
 - $m_H = 115$ GeV
 - Expectation
The Neutral Higgses of the MSSM

Two Higgs Doublets: 5 Higgses

h^0 light CP-even Higgs
H^0 heavy CP-even Higgs
A^0 CP-odd Higgs
H^+, H^- Charged Higgs

$m_{h^0} < \sim 135$ GeV

Higgs-strahlung

$$\sigma_{hZ} = \sin^2 (\beta - \alpha) \sigma_{hZ}^{SM}$$

And fusion processes too!

Associated Production

$$\sigma_{hA} = \cos^2 (\beta - \alpha) \bar{\lambda} \sigma_{hZ}^{SM}$$

$\bar{\lambda}$: kinematic factor (m_h, m_A, \sqrt{s})
Reconstructed Mass Distribution of hA Search Candidates

MSSM constraint: cross-section is large only for $m_h \approx m_A$. So plot $m_h + m_A$ for the minimum mass difference (4jet).

Four-b channel:

bbττ channel:
MSSM Exclusions in the Max-\(m_H\) Scenario

Mass Limits:

\[m_H > 89.9 \quad 93.8 \]
\[m_A > 90.5 \quad 94.1 \]

\(\tan\beta\) excluded from
\[0.52 \text{ to } 2.25 \quad \text{obs.} \]
\[0.48 \text{ to } 2.48 \quad \text{expected} \]
Summary and Plans for the LEP Higgs WG

- Much progress for one month:
 - 79 pb$^{-1}$ of data added in combination
 - Detailed systematic checks
 - Excess is robust under scrutiny
 - Excess is more consistent -- two experiments see excess candidates

- Minimal SM Higgs excluded for $m_H < 113.2$ GeV -- but we expected to exclude up to 115.0 GeV

- 2.5σ excess persists at $m_H = 115$ GeV.
 September LEPC: 2.6σ
 Same data with new analysis: 2.2σ
 With new data: 2.5σ

Actual history of CL$_b$ will depend on the discrete arrival of candidates.
 Sawtooth CL$_b$ vs. time (if there is a signal)

- Another combination planned for the 3 November LEPC.